Witam, przestała działać ładowarka wkrętarki 18V. Ładowarka składa sią z zasilacza i złączki wpinanej w akumulator. Wylutowałem kabel złącza od z zasilacza i podpiąłem do drugiego zasilacza 24V 1A zachowując biegunowość. Po kilkunastu sekundach ze złącza do akumulatorów poszedł dym.
Po niemal całkowitym przestawieniu się na pracę zdalną znacząco wzrosło moje zapotrzebowanie na energię elektryczną. Jest to odczuwalne szczególnie zimą, gdy słońce pojawia się na krótko i pada na panele słoneczne pod zdecydowanie zbyt niskim kątem. Jednym ze sposobów optymalizacji zużycia prądu w kamperze jest sprawdzenie, które urządzenia wykorzystują go najwięcej i jak są ładowane. Jak to się zaczęło W moim kamperze jednym z najczęściej używanych i najmocniej zużywających prąd urządzeń z racji wykonywanej pracy jest oczywiście laptop. Do kampera wprowadzałem się z Samsungiem RF711. Matryca 17″, mocne, choć nieco już postarzałe podzespoły, niedawno zakupiona większa bateria (ech… te wspaniałe czasy, gdy bateria była modułowa i nawet mogła wystawać poza obrys laptopa). Szybko jednak okazało się, że te podzespoły są mało ekonomiczne pod względem zużycia prądu. W tamtym czasie nie przeszkadzało mi jeszcze to, że musiałem go ładować z przetwornicy. I tak wykorzystywałem ją do ładowania maszynki do golenia, szczoteczki do zębów i kilku innych urządzeń, których nie dało się ładować przez USB. Jednak w miarę upływu czasu większość urządzeń wymieniłem lub przystosowałem do ładowania z portów USB. (Uwaga, mała podpowiedź: jeśli jakieś urządzenie ładuje się napięciem 5V, to znalezienie odpowiedniego przewodu nie powinno stanowić większego problemu 😉 ). Ale co zrobić z laptopem? Już pierwszej zimy okazało się, że agregat chodził przez więcej godzin niż zakładałem. Po zakupie nowego regulatora paneli słonecznych miałem możliwość dużo bliżej przyjrzeć się zużyciu prądu w dowolnym momencie. A dzięki urządzeniu eLog-01 mogłem również przeanalizować i porównać dane historyczne (więcej informacji na ten temat znajdziesz w tym wpisie). W pierwszym odruchu i na podstawie niektórych informacji znajdowanych w Internecie zacząłem się zastanawiać nad zakupem ładowarki samochodowej. Jednak, po pierwsze, taki wydatek jest dość spory (nawet kilkaset złotych). Poza tym z przetwornicy można zasilić nie tylko laptopa, natomiast ładowarka samochodowa do laptopa – jak sama nazwa wskazuje – rzadko kiedy ma bardziej uniwersalne zastosowanie. Dodatkowo zacząłem myśleć o wymianie sprzętu na coś nowszego, mniejszego, bardziej ekonomicznego i nowego laptopa Po dość długich poszukiwaniach bardziej energooszczędnego i sprawdzającego się w realiach kamperowych laptopa mój wybór padł na urządzenie Dell XPS 12 9250. Zakupiony przeze mnie egzemplarz wyposażony był w dwa porty USB-C oraz dodatkowe przejściówki rozszerzające złącza o porty USB-A, HDMI czy Ethernet. Możliwość ładowania z portu USB-C (a w zasadzie Light Peak czyli Thunderbolt) wydawała się dość optymistyczna, a sam zasilacz miał moc zaledwie 30W, co dobrze wróżyło jeśli chodzi o zapotrzebowanie na prąd. W międzyczasie wymieniłem telefon na taki ze złączem USB-C i zaopatrzyłem się w ładowarkę samochodową. Myślałem, że ta sama ładowarka (o mocy 60W) będzie mogła ładować oba urządzenia. Po krótkich testach okazało się jednak, że nie. Musiałem zakupić inną, a mój wybór padł na ładowarkę Xiaomi o mocy 100W (1A1C, 5A). Ta ładowarka posiadała więcej niż wystarczający zapas mocy do ładowania mojego mini-laptopa – jednak za nic w świecie nie chciała go ładować… Do dziś nie poznałem konkretnej przyczyny, ale wydaje się, że problem wynikał z łącza w laptopie i jego trybu komunikacji z ładowarką. Najważniejsze jest jednak to, że udało mi się zastosować obejście tego problemu. Początkowo tym obejściem był tester UD24 USB / TYPE-C. Gdy prąd przechodził za jego pośrednictwem urządzenie ładowało się. I tak radziłem sobie przez czas jakiś, aż zapragnąłem podłączyć więcej urządzeń i okazało się, że dwa porty USB-C są niewystarczające. Zakupiłem więc Baseus Hub Type-C do 4x USB + PD 60W + ładowarka indukcyjna Qi 10W (strona). Miałem wtedy Samsunga S8, więc ładowarka indukcyjna stanowiła bardzo miły dodatek. I tu kolejne zaskoczenie. Ładowarka i tak musi być podłączona do drugiego portu. Teoretycznie wszystko było w porządku, prawda? No, nie do końca… Po pierwsze, miałem zajęte wszystkie porty zarówno w laptopie, jak i w hubie, a po drugie… powyższy hub nie posiadał wyjścia HDMI. Tymczasem ja zacząłem się zastanawiać nad drugim, nieco większym monitorem, aby rozszerzyć przestrzeń roboczą. Mój wybór padł na HUB 8W1 USB-C HDMI 4K RJ45 SD/TF z dwoma portami USB-C, w tym portem ładowania (Power Delivery). Teoretycznie zapewniał wszystko, czego mogłem potrzebować. Okazało się jednak, że ładowanie owszem, działa, ale bardzo chimerycznie a do tego wymaga sporo zachodu i cierpliwości. W tzw. międzyczasie miałem możliwość korzystać przez kilka miesięcy ze służbowego laptopa Dell Latitude 5410. On też miał złącze ładowania w formie portu USB-C PD. I tam działało to niezawodnie. Więc znów zacząłem się zastanawiać nad zmianą sprzętu prywatnego. No i drugim monitorem… Ktoś mógłby zapytać: “No, ale co to za problem, skoro jest przejściówka z USB-C na HDMI?” Teoretycznie tak, ale… Standardowe monitory nie są zasilane przez HDMI, tym złączem idzie tylko sygnał wideo. Konieczne jest zatem źródło zasilania, a powrót do przetwornicy 230V nie wydawał się ani dobrym, ani tym bardziej satysfakcjonującym mnie rozwiązaniem. Nie po tych wszystkich przygodach i usilnych staraniach ominięcia jej. Większość monitorów spełniających moje oczekiwania i przystępnych cenowo była jednak zasilana z 230V, część z 19V. Znalazły się też modele zasilane z 12V, ale jeśli ktoś myśli, że może taki monitor podłączyć bezpośrednio pod akumulator samochodu, to bardzo się myli. Akumulator nie zapewnia stabilnego napięcia. Konieczne są adaptery zasilania, co powoduje dodatkowe koszty, dodatkowe przetwornice. Nie. Ja miałem inną wizję, zatem wciąż musiałem szukać odpowiadającego mi rozwiązania…Czas na kolejne zmiany Przy okazji zmiany pracy (na web developera w pełnym wymiarze czasu) kolejne inwestycje w sprzęt okazały się koniecznością. Nie miałem już służbowego laptopa, a prywatnie marzył mi się mocniejszy, ale nadal energooszczędny laptop oraz dodatkowy monitor. Generalnie byłem zadowolony z pracy na obu laptopach marki Dell, więc naturalnym było szukanie kolejnego urządzenia wśród modeli właśnie tej marki. Znalezienie odpowiedniego dla mnie sprzętu zajęło mi około 3 miesięcy, aż w końcu w bardzo dobrej cenie pojawił się on – Dell XPS 13 9370: Ten model ma bardzo przyzwoite parametry, pomimo, że nie jest najnowszy. Trzy porty USB-C – przy mojej ilości posiadanych przejściówek – wydają się być wystarczające. Miałem okazję przetestować go ze wszystkich stron i jedyne co musiałem zrobić po zakupie, to wymienić baterię na nową. Model ten bez żadnych problemów komunikuje się ze wspomnianą wcześniej ładowarką Xiaomi o mocy 100W. Jednak na moim wyposażeniu – zapobiegawczo – pojawił się jeszcze jeden model ładowarki samochodowej na 12V o mocy 100W, jest to Baseus USB Type-C Power Delivery Quick Charge Z tą ładowarką nowy laptop również komunikuje się bez problemu, dodatkowo na wbudowanym wyświetlaczu ładowarka pokazuje chwilowe zużycie prądu. Kwestię zasilania mam zatem zabezpieczoną. Przetwornica wydaje się już zupełnie bezużyteczna. Tylko co z monitorem? Szukanie wśród monitorów przenośnych wskazywało na konieczność posiadania sporego budżetu. Szukałem monitora o przekątnej 15″ i podłączanego pod – a jakże! – USB-C. Ostatecznie promocje i wyprzedaże skłoniły mnie do zakupu monitora marki Asus: Model MB169C+ o przekątnej 15,6″ i podłączany pod USB-C (jednym łączem idzie zasilanie i obraz) spełnia moje oczekiwania. Producent w zestawie dostarczył bardzo przyzwoite i sztywne etui, które stanowi jednocześnie podstawkę, ale ja chciałem ten monitor zamontować w uchwycie biurkowym. Aby było to możliwe konieczny był adapter od firmy Digitus, ponieważ monitor nie posiada otworów montażowych w standardzie VESA. Swoją drogą uchwyt biurkowy na sprężynach gazowych też jest świetnym rozwiązaniem, które szczerze mogę polecić, i z którego jestem bardzo zadowolony! Nie montuje się go na sztywno. Po włożeniu monitora do torby na laptopa, uchwyt można złożyć, a cała operacja zajmuje nie więcej niż kilkanaście sekund. Teraz czas na podsumowanie i powrót do merytoryki, czyli…Jak aktualnie wygląda zużycie prądu Aktualnie mój zestaw (tablet, który jest routerem LTE, laptop i dodatkowy monitor) podczas normalnej pracy (przy włączonym trybie najwyższej wydajności) pobiera od 22 do 40 watów. W szczycie (np. gdy trzeba doładować baterię) zużycie dochodzi do 55-60 watów. Co ciekawe, ładowarka do tego laptopa ma moc znamionową 45W – wychodzi na to, że po podłączeniu urządzeń peryferyjnych ta moc może okazać się niewystarczająca. Moja ładowarka samochodowa (Xiaomi) jednak ani razu się nie zająknęła, nie wyskoczyły żadne błędy. Zakładając, że średnio zużywane są 3 ampery, to mój nowy akumulator LiFePO4 o pojemności 100ah wystarczyłby na około 33 godziny pracy, czyli w trybie 8 godzinnego dnia pracy nieco ponad cztery dni. Oczywiście są to wyliczenia orientacyjne, bo przecież podczas takiego tygodnia z prądu korzysta nie tylko laptop. Trzeba również zasilić tablet (który udostępnia Internet) i telefon. W tym czasie byłby również dostarczany prąd z paneli słonecznych (zimą co prawda niewielki, ale jednak). Ciekawie to wygląda na wykresie z regulatora: Praktyka zatem pokazuje, że nawet bez zewnętrznego zasilania moja praca przez kilka dni bez dużego słońca nie jest zagrożona. Komfort tej pracy znacząco się podniósł dzięki dodatkowemu monitorowi. Dodatkowo wciąż pozostają w odwodzie akumulatory żelowe, których się nie pozbyłem. Są one aktualnie poza obwodem elektrycznym, jedynie doładowywane przy sprzyjających warunkach, aby utrzymać je w jako takiej kondycji. Jeśli masz jakieś pytania, to skontaktuj się ze mną lub napisz komentarz pod artykułem – chętnie pomogę! 😉
Akurat 1N4148 mam A nie przeszkadza że one są do 2A Mam jeszcze pytanie. Wczoraj poskładałem zasilacz aczkolwiek jeszcze z samym LED-em nie mam w domu internetu. Napięcie ładnie się reguluje ale z natężeniem
W sklepach internetowych i na portalach aukcyjnych można kupić wiele różnych modułów elektronicznych. Wykorzystują najczęściej układy scalone chińskich producentów półprzewodników. Koszt zakupu gotowego modułu, często jest niższy niż oddzielnie kupowanych elementów. Jednymi z najczęściej kupowanych są moduły zasilające: przetwornice, układy nadzoru napięcia akumulatorów litowych, ładowarki. Wszystkie mogą być wykorzystane jako elementy składowe konstruowanych urządzeń. Oto przegląd i wskazówki dotyczące wykorzystania. Ładowarki - najwazniejsze funkcje i informacje Ładowarki można kupić jako gotowe urządzenia lub moduły. Poniżej opisane zostały najczęściej spotykane konstrukcje. IMAX B6, IMAX B6 V2. Są to najpopularniejsze ładowarki uniwersalne. Ładowarka IMAX B6V2 jest nowszą wersją układu IMAX B6 – fotografia leadowa. Obudowy obu typów ładowarek wykonane są z barwionego aluminium i są estetyczne. Posługiwanie się tymi ładowarkami, po zaznajomieniu ze strukturą menu, nie nastręcza żadnych trudności. Ładowarki IMAX szczególnie chętnie używane są przez modelarzy, ponieważ są lekkie, mają niewielkie rozmiary i umożliwiają ładowanie oraz pomiar pojemności różnych akumulatorków: NiMH, NiCd, ołowiowych, LiPo, Li-Ion, (ściślej LiFePO4). Najważniejszą zaletą tych ładowarek jest wbudowany układ tzw. balansera, pozwalający jednocześnie ładować do 6 akumulatorów litowych połączonych szeregowo. Nowsza ładowarka IMAX B6V2 automatycznie rozpoznaje liczbę akumulatorów, umożliwia pomiar rezystancji wewnętrznej akumulatorów oraz ładowanie najnowszych generacji akumulatorów litowych. Do ładowarek dostępne są dodatkowe przewody umożliwiające ładowanie większej liczby akumulatorów (złącza balansera), ładowanie akumulatorów z różnymi typami złączy, oraz czujnik temperatury kontrolujący temperaturę ładowanych ogniw. Ładowarka wymaga zasilania z zewnętrznego zasilacza o wydajności zależnej od prądu i napięcia ładowanych aktualnie ogniw. Ładowarka na układzie scalonym TP4056 Ładowarki - układ TP4056 Ładowarki na układzie scalonym TP4056 są jednymi z najczęściej spotykanych. Przeznaczone są do ładowania pojedynczych akumulatorów Li-Ion i pokrewnych Li-Po. Do ładowania akumulatorów wykorzystują metodę CC-CV (Constant Current – Constant Voltage). Przykład takiej ładowarki pokazany jest na fotografii 2. Napięcie zasilania tych ładowarek wynosi typowo 5V, minimalnie 4V, a maksymalnie 8V. Obudowa układu TP4056 ma na dole wyprowadzenie termiczne (pad termiczny) odprowadzające ciepło do płytki drukowanej. Końcowe napięcie ładowania akumulatora wynosi 4,2V z dokładnością 1,5%. Prąd ładowania reguluje się opornikiem podłączonym do wyprowadzenia 2 (PROG). Wartość prądu wylicza się ze wzoru I = 1200/ Rprog (prąd I w miliamperach, rezystancja R w omach). Gdy napięcie na ładowanym akumulatorze jest mniejsze niż 2,9V, ładowarka ładuje akumulator niewielkim prądem równym około 10% znamionowego prądu ładowania. Gdy później układ ładuje nominalnym prądem, to na wyprowadzeniu PROG występuje napięcie 2V, a gdy ładuje prądem obniżonym, to na końcówce PROG jest napięcie 0,2V. Układ umożliwia kontrolę temperatury ogniwa przez podłączenie termistora typu NTC (o odpowiedniej rezystancji i stałej B) do wyprowadzenia 1 układu scalonego (TEMP). Drugie wyprowadzenie termistora podłączone jest do masy. Układ ładuje akumulator, gdy napięcie na pinie pierwszym (TEMP) mieści się w przedziale między 45...80% napięcia zasilającego układ scalony. Jeśli napięcie wyjdzie poza dozwolony obszar na czas dłuższy niż 0,15s, wtedy ładowanie akumulatora jest przerywane do momentu ostygnięcia akumulatora. Funkcję kontroli temperatury ogniwa można wyłączyć, nie montując termistora i łącząc wyprowadzenie TEMP do masy. Gdy różnica między zasilaniem a napięciem na ładowanym akumulatorze jest niższa niż 30mV, układ ładowarki przechodzi w tryb uśpienia. Gdy ładowarka przechodzi do trybu czuwania po naładowaniu akumulatora, dioda LED podłączona do wyprowadzenia 6 świeci (Stdby). Dioda LED podłączona do wyprowadzenia 7 (Chrg) świeci podczas ładowania akumulatora. Płytka układem TP4056 i dodatkowym układem kontroli napięcia zasilania Na portalach aukcyjnych można kupić moduły zawierające połączone równolegle układy TP4056, dzięki czemu zwiększony jest prąd ładowania. Dostępne są również wersje płytek zawierające oprócz układu TP4056 dodatkowy układ kontroli napięcia zasilania zapobiegający zbytniemu rozładowaniu akumulatora (fotografia 3) – właśnie tego typu modułów używam najczęściej w swoich projektach. Inne wersje to ładowarka zintegrowana z przetwornicą – fotografia 4. Ładowarka zintegrowana z przetwornicą Warto wiedzieć, iż żywotność akumulatora litowego podłączonego do ładowarki można zwiększyć, obniżając końcowe napięcie ładowania poniżej 4,2V. Modyfikacja taka jest bardzo prosta do wykonania. Wystarczy szeregowo z akumulatorem włączyć diodę Schottky’ego na czas ładowania, jak pokazano na rysunku 5. Ważne jest, aby dioda ta mogła ciągle przewodzić prąd równy prądowi ładowania i miała możliwie niski spadek napięcia. Diody Schottky’ego mają różny spadek napięcia w zależności od wielkości (powierzchni) struktury oraz od sposobu produkcji. Spadek napięcia na złączu silnie zależy od prądu płynącego przez diodę. Obecność opcjonalnego rezystora spowoduje, że bardzo długie pozostawienie akumulatora w ładowarce naładuje go do pełnego napięcia 4,2V. Dioda Schottky’ego włączona szeregowo z akumulatorem Ładowarki impulsowe - TP5000 i TP5100 Nowszą generacją układów serii TP4056 są układy TP5000 i TP5100. Układy te są ładowarkami impulsowymi o znacznie wyższej sprawności niż układ TP4056. Maksymalny ciągły prąd ładowania wynosi w ich przypadku 2A. Pozostałe funkcjonalności są analogiczne do układu TP4056. Układ TP5000 może ładować akumulatory litowo-manganowe o napięciu nominalnym końcowym ładowania 4,2V lub LiFePO4 o napięciu końcowym 3,6V. Wybór końcowego napięcia ładowania odbywa się za pomocą zwory podłączonej między pinem 13 (CS) a masą lub plusem zasilania. Po podłączeniu wyprowadzenia CS do masy układ przechodzi w stan spoczynku, gdy podłączymy je do napięcia zasilającego przez opornik podciągający, układ może ładować akumulatory o napięciu nominalnym 4,2V, a gdy wyprowadzenie to nie jest podłączone do żadnego potencjału, układ może ładować akumulatory o napięciu nominalnym 3,6V. Układ umożliwia regulację wstępnego prądu ładowania w zakresie od 10 do 100% wartości prądu nominalnego (wyprowadzenie RTRICK – pin 12). Funkcja ta aktywuje się w przypadku ładowania mocno rozładowanych ogniw. Maksymalne napięcie zasilające układ wynosi 9V. Układ TP5100 - ładowarka impulsowa Układ TP5100 jest nowszą wersją układu TP5000 (fotografia 6). Maksymalne napięcie zasilające może wynosić 18V. Układ przeznaczony jest do ładowania akumulatorów Li-Ion/Li-Po: pojedynczo, gdy napięcie końcowe ładowania wynosi 4,2V, lub dwóch szeregowo połączonych, gdy końcowe napięcie ładowania wynosi 8,4V. Wybór napięcia ładowania odbywa się za pomocą zwory pomiędzy wyprowadzeniami 13 (CS) i 10 (VREG). Ich zwarcie powoduje, że napięcie końcowe ładowania wynosi 8,4V, zaś rozwarcie powoduje, że napięcie ładowania wynosi 4,2V. W przypadku ładowania akumulatorów litowych połączonych szeregowo powinny one mieć wbudowany układ BMS, czyli układ zabezpieczający akumulator przed zbyt wysokim napięciem ładowania lub balanser. Ładowanie ładowarką o napięciu wyjściowym 8,4V akumulatorów zawierających tylko układ BMS nie gwarantuje pełnego naładowania ogniw, gdyż ładowanie zostanie przerwane, gdy tylko jedno z ogniw zostanie naładowane. Znacznie lepsze rezultaty uzyska się, stosując balanser. Układy TP5000 i TP5100 umożliwiają regulację nominalnego prądu ładowania (rezystor Rs), oraz prądu ładowania głęboko rozładowanych akumulatorów (Rtrick).
popularne miasta. Szukasz "Końcówka" w Ładowarki - Najwięcej ofert w jednym miejscu. Radość zakupów i 100% bezpieczeństwa dla każdej transakcji. Kup Teraz!
Cześć. Chyba każdemu zdarza się zostawiać ładowarkę w kontakcie 😇 Najlepszym sposobem aby sprawdzić czy ładowarka pobiera prąd, jest chwycenie za miernik i sprawdzenie poboru mocy. Prawdopodobnie miernik pokaże 0 wattów. Wydawać by się mogło więc że sama ładowarka pozostawiona w gniazdku nie pobiera prądu, ale to nie do końca jest prawdą. Ładowarka czy jakiekolwiek urządzenie wpięte do gniazdka zawsze będzie pobierało prąd, choć może być to tak mała wartość że miernik nie będzie w stanie jej wykryć. Ile pieniędzy tracimy gdy zostawimy ładowarkę w kontakcie Fajne wyliczenia opisało na swoim blogu Lenovo. Z ich pomiarów wynika że za prąd zapłacimy od 4 do 20 groszy więcej w ciągu miesiąca. Zmierzone wartości wyniosły między 0,1 a 0,5 W i zależały głównie od modelu i wieku urządzenia. Jeśli założymy, że ładowarka jest podłączona do gniazdka 24 godziny na dobę, to w ciągu miesiąca zużyje ona od 0,07 do 0,36 kWh. Jeśli przyjmiemy, że 1 kilowatogodzina kosztuje 55 groszy, to zapłacimy za prąd miesięcznie od 4 do 20 groszy więcej. Uwzględniając najwyższą wartość, wychodzi że w ciągu całego roku zapłacimy za prąd o 2,4 złotego więcej. Wydaje się że nie jest to majątek, ale trzeba sobie dodać do tego również inne ładowarki i urządzenia które zdarza na się zostawiać w gniazdku. W dniu o 13:22, Gość Ripley napisał: po naładowaniu telefonu do pełna (100%) ładowarka dalej będzie pożerać energię elektryczną z sieci? Obecnie smartfony są zabezpieczone przed przeładowaniem baterii. Przeważnie działa to tak że ładowarka odcina dopływ prądu w momencie pełnego naładowania baterii, ale wciąż utrzymuje zasilanie. Można zostawić ładowarkę na przykład na miesiąc i nic się nie stanie. Wracając od pytania, tak naładowany telefon dalej będzie pobierać prąd. Wniosek? Kampania reklamowa którą oglądałeś zawierała prawdziwe informacje. Najlepiej odłączać każde urządzenie które nie jest w żaden sposób wykorzystywane i potrzebne.
. 443 436 211 4 154 431 480 314